AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues.
نویسندگان
چکیده
AML1 (RUNX1) is one of the most frequently disrupted genes in human leukemias. AML1 encodes transcription factors, which play a pivotal role in hematopoietic differentiation, and their inappropriate expression is associated with leukemic transformation of hematopoietic cells. Previous studies demonstrated that the transcription cofactor p300 binds to the C-terminal region of AML1 and stimulates AML1-dependent transcription during myeloid cell differentiation. Here, we report that AML1 is specifically acetylated by p300 in vitro. Mutagenesis analyses reveal that p300 acetylates AML1 at the two conserved lysine residues (Lys-24 and Lys-43). AML1 is subject to acetylation at the same sites in vivo, and p300-mediated acetylation significantly augments the DNA binding activity of AML1. Disruption of these two lysines severely impairs DNA binding of AML1 and reduced the transcriptional activity and the transforming potential of AML1. Taken together, these data indicate that acetylation of AML1 through p300 is a critical manner of posttranslational modification and identify a novel mechanism for regulating the function of AML1.
منابع مشابه
Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65
Nuclear factor kappaB (NF-kappaB) plays an important role in the transcriptional regulation of genes involved in immunity and cell survival. We show here in vitro and in vivo acetylation of RelA/p65 by p300 on lysine 314 and 315, two novel acetylation sites. Additionally, we confirmed the acetylation on lysine 310 shown previously. Genetic complementation of RelA/p65-/- cells with wild type and...
متن کاملAcetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response.
To maintain intracellular redox homeostasis, genes encoding many antioxidants and detoxification enzymes are transcriptionally upregulated upon deleterious oxidative stress through the cis antioxidant responsive elements (AREs) in their promoter regions. Nrf2 is the critical transcription factor responsible for ARE-dependent transcription. We and others have previously demonstrated that Nrf2 is...
متن کاملAcetylation-mediated transcriptional activation of the ETS protein ER81 by p300, P/CAF, and HER2/Neu.
The regulated expression of the ETS transcription factor ER81 is a prerequisite for normal development, and its dysregulation contributes to neoplasia. Here, we demonstrate that ER81 is acetylated by two coactivators/acetyltransferases, p300 and p300- and CBP-associated factor (P/CAF) in vitro and in vivo. Whereas p300 acetylates two lysine residues (K33 and K116) within the ER81 N-terminal tra...
متن کاملThe leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation.
The chromosomal translocations found in acute myelogenous leukemia (AML) generate oncogenic fusion transcription factors with aberrant transcriptional regulatory properties. Although therapeutic targeting of most leukemia fusion proteins remains elusive, the posttranslational modifications that control their function could be targetable. We found that AML1-ETO, the fusion protein generated by t...
متن کاملAcidic domains: “converse readers” for acetylation code
During past decades, acetylation has emerged as a general post-translational modification that is widespread and distributed on lysine residues of histones and nonhistone proteins. Lysine acetylation has been suggested to create a platform for the recruitment of bromodomaincontaining proteins that serve as “readers” to decode information within the acetylated lysine residues [1]. However, the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 15 شماره
صفحات -
تاریخ انتشار 2004